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Already today, the generation of blue, turquoise and green hydrogen has the potential of reducing the 

specific GHG emissions by 50 - 95% compared to the state of the art (grey hydrogen). In Germany, the 

production of green hydrogen from offshore wind energy has the highest mitigation potential. 

Negative GHG emissions can be illustrated by means of the generation of blue and turquoise H2 from 

biomethane as the CO2 absorbed as solid carbon or gaseous CO2 during biomass growth can be 

sequestered. 

Perspectively, GHG reductions between 75 and >95% can be achieved with blue, turquoise and green 

hydrogen. 

‒ In terms of green H2, the upstream chain emissions of the electricity supply determine the GHG 

emissions of the hydrogen. Depending on the H2 production site, the transport expenditure for pipeline 

transport must, where necessary, also be taken into consideration. Besides, for the production of green 

hydrogen from PV electricity, the upstream chain emissions for the manufacture of the PV modules are 

of crucial importance. Hence, when modules from China (year of production 2020) are used, the carbon 

footprint of PV electricity is higher by a factor of 1.75 than for modules manufactured in Europe. The 

main influencing factor in this is the electricity mix of the respective country of production.

‒ For blue and turquoise H2, the upstream chain emissions of the natural gases/methane used crucially 

influence the GHG emissions of the hydrogen. A further reduction of the upstream chain emissions of 

natural gas/methane beyond the 30% reduction target (best case) of the EU must therefore be aimed at.

Negative GHG emissions can be illustrated on blue and turquoise H2 production from biomethane, 
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Definition of task
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Within the scope of this brief study, the greenhouse gas emissions (GHG emissions) of the 

following hydrogen supply paths were analysed. The required procedural data were collected in 

the DVGW key project "Roadmap Gas 2050" (see report D 1.1*):

Blue hydrogen from steam reforming with carbon capture and storage (CCS)

Turquoise hydrogen from natural gas pyrolysis with storage of solid carbon

Green hydrogen from water electrolysis with renewable electricity

Based on the work in "Roadmap Gas 2050", a sensitivity analysis in respect of the GHG 

emissions was carried out. In the study at hand, the focus is on the following main points:

Development of the GHG emissions of PV and wind power up to 2050 and classification in 

literature

Development of the GHG emissions of green hydrogen from PV and wind power up to 2050

Development of the GHG emissions of blue and turquoise H2 incl. best case examination

* available in German: https://www.dvgw.de/medien/dvgw/forschung/berichte/g201824-

abschlussbericht-d1.1-rmg2050-h2-Bereitstellung.pdf



H2 supply paths considered
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Biogas / natural gas Wind

Steam reforming 

(with carbon 

capture and 

storage, CCS)

Sun

Photovoltaics
Mechanical

energy

Electrical energy

Water electrolysis

Hydrogen

Pyrolysis



Outline
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GHG emissions PV, wind and mains power

Introduction, methodology

Background data

Results and classification in literature

GHG emissions green hydrogen

GHG emissions blue and turquoise hydrogen



GHG emissions

PV, wind and mains power

Introduction, methodology



GEMIS (global emission model of integrated systems)
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GHG emissions were calculated with GEMIS version 5.0

What is GEMIS?

Freely available computer model with integrated data base for eco-balancing and material flow analyses

Developer: Öko-Institut

First program version published in 1989, since then continuously enhanced; funded among others by 

BMUV, BMBF and UBA.

In April 2012, GEMIS was taken over by the International Institute for Sustainability Analyses and

Strategies (IINAS).

Must current version: 5.0 (published February 2021).

Download: https://iinas.org/downloads/gemis-downloads/



GEMIS (Global Emission Model of Integrated Systems)

Methodology
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Calculation of carbon footprint (CF) with GEMIS 5.0

The GEMIS database comprises more than 10,000 processes from the areas energy 

sources, current and heat, material production and transport (incl. reference to sources)

Each process supplies among others information on technology data (e.g. process 

efficiency), raw material/energy requirement or environmental data (e.g. direct 

emissions)

At the same time, transport processes and their energy requirements are also considered.

In addition, preliminary construction work or rather the raw materials and substances 

required for this are considered for each process. 

This results in a process network that interconnects individual processes by means of 

links, thus integrating the life cycles. 

With this, it is for instance possible to record both environmental effects (carbon footprint) 

as well as indirect effects across the entire process chain by means of upstream processes.

The technology data/raw material and energy requirements of the processes can be 

adapted or own processes can be created.



GHG emissions

PV, wind and mains power

Background data



GHG emissions: PV, wind and mains power

Methodology
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Introductory remarks:

The type of renewable power source plays a crucial role for the carbon footprint of green hydrogen

The manufacture of the power generation plants is associated with greenhouse gas emissions which 

are arising upstream, i.e. mainly during manufacture of the materials (e.g. steel, concrete, copper and 

aluminium). This will still be the case in the year 2050, even though the manufacturing processes 

(efficiency factors), material requirements and background processes (electricity mix, energy input, 

raw material provision) continue to improve.

The manufacturing processes of the required materials and the associated energy requirements and 

emissions (= background system) are stored in GEMIS in form of a database.

By mapping the PV and wind plants in GEMIS v 5.0 (= definition of plant size, mode of operation and 

full load hours, useful life), it is possible to calculate the specific GHG emissions for the provision of 

electricity (incl. upstream chain emissions).



Development – German electricity mix

Source: GEMIS v5.0 (NECP)
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Carbon footprint – German electricity mix (without grid losses)

Source: GEMIS v5.0 (NECP)
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10%

49%

41%

2020

65%

35%

2030

0%

97%

3%

2050 (2045)

352 g CO2-eq/kWh 261 g CO2-eq/kWh 30 g CO2-eq/kWh

Due to the amended Climate Protection Act 2021 it is to be assumed that clearly higher GHG 

reductions will already be achieved by 2030. The values for 2030 determined in this 

presentation should accordingly be regarded as conservative.

Nuclear Renewable Non-renewable



Carbon footprint – PV / wind energy

GEMIS assumptions
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PV plant (PVP):

Monochrystalline silicon modules

Site: MENA 

Irradiance: 2000 kWh/(m2*a)

Full load hours: 2475 h/a

Module efficiency:

‒ 2020: 18%

‒ 2030: 20%

‒ 2050: 22%

31,0%

61,9%

5,6% 1,5%

Materialmix PV-A 

PV-Modul (Si)

Stahl-Blech

Aluminium

Kupfer

Development by 2050 (2045):

Material mix remains constant but the underlying industrial processes are changing

(efficiency, electricity mix, manufacturing methods)

PV module (Si)

Steel sheet

Aluminium

Copper

Material mix PV plant

5.6%
1.5%

31.0%

61.9%
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Production 2020:

(in GWp)

7.7

23.3

120.6

Source: Own diagram, data from Fraunhofer ISE 2022 [4]
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Carbon footprint – PV / wind energy

GEMIS assumptions
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Wind energy plant onshore (WEP):

Output1: 

‒ 2020: 2.2 MW

‒ 2030: 3.3 MW

‒ 2050: 6 MW

Full load hours: 2200 h/a

Service life: 20 a

Development by 2050 (2045):

Material mix remains constant but the underlying industrial processes are changing

(efficiency, electricity mix, manufacturing methods)

74,0%

23,4%

2,0%
0,4%

0,2%

Materialmix WE-A (onshore)

Beton

Stahl

HDPE-Granulat

Kupfer

Aluminium

Material mix WE plant (onshore)

2.0%
0.4%

0.2%

23.4%

74.0%

1: Assumptions are based on UBA 2021 [5]

Concrete

Steel

HDPE granulate

Copper

Aluminium



Carbon footprint – PV / wind energy

GEMIS assumptions
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Wind energy plant offshore (WEP):

Output1:

‒ 2020: 3.6 MW

‒ 2030: 11 MW

‒ 2050: 20 MW

Full load hours: 3800 h/a

Service life: 20 a

Development by 2050 (2045):

Material mix remains constant but the underlying industrial processes are changing

(efficiency, electricity mix, manufacturing methods)

31,9%

63,2%

3,5%
0,9%

0,5%

Materialmix WE-A (offshore)

Beton

Stahl

HDPE-Granulat

Kupfer

Aluminium

0.5%

31.9%

1: Assumptions are based on UBA 2021 [5]

Concrete

Steel

HDPE granulate

Copper

Aluminium

Material mix WE plant (offshore)

3.5%
0.9%

63.2%



GHG emissions

PV, wind and mains power

Results and classification in literature



Values in literature – PV plant (monocrystalline Si-module)

Carbon footprint in g CO2-eq/kWh
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performance ratio (here: 0.8) and 
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Excursion: PV plants

Production sites PV modules

22

Source: Own diagram, data from Fraunhofer ISE 2022 [4]
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Literature research – wind energy plant (onshore)

Carbon footprint in g CO2-eq/kWh
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• Functional unit: 

"kWh electricity fed into the grid"

• Result depends on plant output (here: 

1.5 – 4.5 MW) and full load hours

• Only limited comparability within 

similar "electricity yield ranges" 

possible!
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Literature research – wind energy plant (offshore)

Carbon footprint in g CO2-eq/kWh
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• Functional unit: 

"kWh electricity fed into the grid"

• Result depends on plant output (here: 

3 – 8 MW) and full load hours

• Only limited comparability within similar 

"electricity yield ranges" possible!

No essential difference between offshore and onshore plants.

Higher output is offset by additional expenses for erection of the plant and connection to the 

network (submarine cable).

Study (output)



Interim conclusion

Evaluation of literature
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LCA studies only look at the past (primary data)

Calculations in GEMIS integrate well into the hitherto existing studies landscape

As for PV, GEMIS is based on German production site data. However, more than 90% of PV 

modules are manufactured in Asia (67% in China). The production site China was therefore 

considered as additional sensitivity (→ value in literature UBA 2021 [5]).



Carbon footprint – PV / wind energy

Source: GEMIS v5.0
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PV plants have a higher carbon footprint than wind energy plants. 

Offshore WEP exhibit the lowest carbon footprint (higher full load hours and plant output)

Assumption: electricity mix 
approx. 665 g CO2-eq/kWh1

0= electricity mix DE 2001 
(659 g CO2-eq/kWh)

Assumption: electricity mix CN 
2030 = electricity mix DE 2010 

(582 g CO2-eq/kWh1)

Assumption: electricity mix CN 
2050 = electricity mix DE 2030 

(261 g CO2-eq/kWh1)

1: Source: GEMIS v 5.0, Carbon footprint PV module (China) acc. to UBA 2021 [5] 

WEP (onshore)



GHG emissions

Green hydrogen



GHG emissions of green hydrogen

Methodology
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Calculation of carbon footprint (CF) with GEMIS 5.0

The functional unit was specified as 1 kWh (lower calorific value) hydrogen at 30 bar

The energy sources are made available in Germany. If the H2 production does not take place in 

Germany, transport up to the national border is taken into account.

Three different base years were considered: The present-day situation, based on the year 2020, 

a medium-term development ("2030") and a long-term development ("2050")

System boundaries: For this brief study the approach "cradle to product" was chosen. In the 

course of this, all processes along the hydrogen generation and supply chain are considered. The 

following utilisation phase and any end-of-life processes are outside the system boundaries.

Operating mode renewable energy plants: The operating hours of the electrolysers correspond 

to those of the associated power source. Example: PV plants in MENA achieve 2475 full load 

hours per year. Irrespective of the diurnal cycle, the synthesis plants are only operated for this 

time each year. Possible technical consequences of intermittent operation (catalytic converter 

aging, efficiencies of start-up processes) are disregarded

Preliminary construction work for the electrolysis and infrastructure were disregarded as these 

only make up a small portion of the carbon footprint over the service life [6, 7, 8, 9].



System boundaries – Green H2 from PV electricity from MENA
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Electrical energy

"Green" H2

Electrolysis 1 kWh (H2)

Water 

treatment

PV TransportInfeed

System boundaries and 
assumptions in accordance 

with RMG 2050 D1.1

Water

30 bar 100 bar

Base years considered: 2020, 2030, 2050

Preliminary construction work of electrolysis disregarded [6, 7, 8, 9]

3000 km

2475 h/a

0.3 kg

0.02 kWh

2020: 1.62 kWh

0.003 kWh

0.08 kWh

2030: 1.60 kWh

2050: 1.45 kWh



System boundaries – Green H2 from wind energy (DE)
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Electrolysis 1 kWh (H2)

Water 

treatment

WE-A Infeed

30 bar 100 bar

Base years considered: 2020, 2030, 2050

Preliminary construction work of electrolysis disregarded [6, 7, 8, 9]

Electrical energy

"Green" H2

Water

Onshore: 2200 h/a
Offshore: 3800 h/a

0.003 kWh

0.02 kWh

0.3 kg

2020: 1.62 kWh

2030: 1.60 kWh

2050: 1.45 kWh

Own assumptions (consistent 
with RMG 2050 D1.1)
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Results – GHG calculations green H2
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A large portion of the emissions of H2 from MENA (PV) is caused by pipeline transport 

(assumption: compressor operated with mains current)

Pipeline transport



GHG emissions

Blue and turquoise hydrogen



GHG emissions of blue and turquoise hydrogen 

Methodology

33

The approach to calculate the GHG emissions of blue and turquoise hydrogen is based on the deliverable 1.1 

of the project "Roadmap Gas 2050" [17]. The mass and energy balances are based on detailed process 

modelling with the software CHEMCAD®. The GHG emissions of the input material flows, the direct CO2 

emissions from the process and the emissions of CO2 transport and sequestration were determined on this 

basis. The upstream chain emissions were defined as follows:

The following source was taken into account for the natural gas/methane upstream chain emissions: 

natural gas via pipeline from Russia and Norway, natural gas via LNG from the USA and domestic biogas 

(see next transparency). A sensitivity analysis was carried out on this basis.

The upstream chain emissions of the German electricity mix today, 2030 and 2050 are based on the 

NECP (see calculation with regard to green hydrogen)

The upstream chain emissions of the water used were specified as 10 g CO2-eq/kg (H2O) [17]

The emissions from CO2 separation, transport and sequestration were made up as follows: the 

electrical energy requirement (upstream chain emissions electricity) for CO2 separation (carbon capture) 

and the direct CO2 emissions are based on the process modelling. 35 g CO2-eq/kg (CO2) were specified 

for CO2 transport and sequestration (carbon storage) [18]

The emissions for preliminary construction work can be disregarded due to the long service life and the high 

material throughput [6]. 



Literature review of the CO2 upstream chain emissions of natural gas 

and domestic biogas

34

Included in upstream chain emissions:

Extraction, treatment, transport, distribution in DE (CO2 and methane emissions)

For LNG additionally: liquefaction, LNG transport, regasification

Biogas: provision of substrate, plant, plant operation

Russia (pipeline) [10, 12]

g/kWh (LHV)

Norway (pipeline) [10, 12]10 -14

USA (LNG) [11]85

Germany (mean value) [10]24

Maize [13, 14]86

37 - 53

Biowaste [13, 14]25Liquid manure [13, 14]-379



GHG emissions blue hydrogen - Germany (mean value) 2020

35

0.03 kWh 1 kWh (LHV) H2

Extraction, 

transport
36 g CO2-eq/kWh H2

1.5 kWh (LHV) natural 

gas

Electricity

10 g CO2-

eq/kWh H2

0.25 kg CO2/kWh H2

CCS

Separation

Transport & 

storage

0.03 kWh Electricity 28 g CO2-eq/kWh H2

9 g CO2-eq/kWh H2

Carbon dioxide (CO2)

Electrical energy

Blue H2

CO2 equivalents

Natural gas

Water (H2O)

Steam reforming

0.2 kg H₂O Treatment

2 g CO2-

eq/kWh H2

11 g CO2-

eq/kWh H2

Boundary conditions:

90 % CO2 deposition rate

CCS as separate process step

CO2 transport distance: 1000 km



Blue hydrogen

Best case assumption

36

The following assumptions were made for the best case of blue hydrogen produced in Germany:

30% reduction of the natural gas/methane upstream chain emission based on the upstream chain 

emissions in Germany (mean value) [1]

95% deposition degree instead of 90% deposition degree. No increase of the power requirement for 

CO2 separation and no increase of the GHG emissions for CO2 transport and sequestration (carbon 

storage) were taken into consideration in this connection.



GHG emissions blue hydrogen
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0.3 kWh 1 kWh (LHV) H2

3 g CO2-eq/kWh H2

Extraction, 

transport
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Natural gas 
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Carbon (C)

Electrical energy
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CO2 equivalents
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Best case assumption
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The following assumptions were made for the best case of turquoise hydrogen produced in 

Germany:

30% reduction of the natural gas/methane upstream chain emissions based on the upstream 

chain emissions in Germany (mean value) [1]
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Excursion: H2 certification

Example: TÜV SÜD, CertifHy
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CertifHy TÜV SÜD

Type Voluntary standard Voluntary standard

Categories "Green" or "Low carbon" (CCS) "Green" 

System boundaries Well-to-Gate Well-to-Gate (use optional)

Product H2 (3 MPa, purity: 99.9 %) H2 (3 MPa, purity: 99.9 %)

Preliminary construction work Not taken into consideration Not taken into consideration

Reference value 91 g CO2-eq/MJ (calorific value)

328 g CO2-eq/kWh (calorific value)

94 g CO2-eq/MJ (calorific value)

338 g CO2-eq/kWh (calorific value)

Reduction target -60 % compared to reference value

(upgrade to -70 % is intended)

-70 % compared to reference value

Threshold 36 g CO2-eq/MJ (calorific value)

131 g CO2-eq/kWh (calorific value)

28 g CO2-eq/MJ (calorific value)

101 g CO2-eq/kWh (calorific value)

Bound GHG emissions from the manufacture, construction or shutdown of plants are not 

taken into consideration

None of the systems stipulates a future course for its GHG threshold values. The threshold 

values for "Green H2" or "Low carbon H2" will most probably be updated as needed on the 

basis of comprehensive political resolutions (e.g. RED II). 

[15, 16]
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