

www.dvgw.de

Wasserstoffimporte - wieviel, woher und zu welchen Kosten?

H2 Lunch and Learn am 31. Januar 2024

Christiane Staudt, Dr. Stefanie Schwarz

Wasserstoff wird als Schlüsselelement der Energiewende betrachtet

Relevanz von Wasserstoff für die Energiewende in Deutschland

Die NWS zielt unter anderem ab auf:

- einen beschleunigten Markthochlauf von Wasserstoff
- die Sicherstellung ausreichender Verfügbarkeit
- Aufbau lokaler Erzeugungsanlagen sowie Import von aus dem Ausland importieren
- den Aufbau einer leistungsfähigen Wasserstoffinfrastruktur

Deutschland als Energieimportland wird darauf angewiesen sein, sowohl aus dem europäischen Ausland als auch weltweit Wasserstoff zu beziehen.

Viele Fragen, aber genauso viele Studien...

Wieviel Wasserstoff wird zur Verfügung stehen?

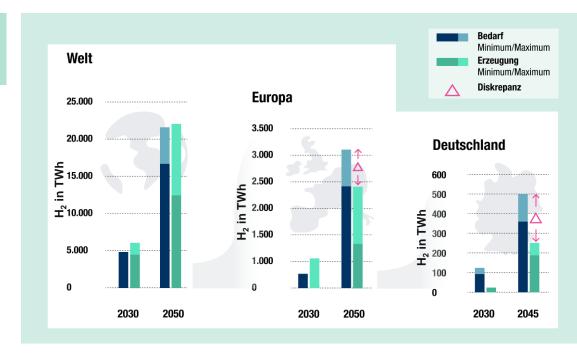
Wo soll er erzeugt werden und wieviel davon?

Zu welchen Kosten?

Und wie kommt er zu uns?

DVGW-Kurzstudie zu Wasserstoffimportpotenzialen:

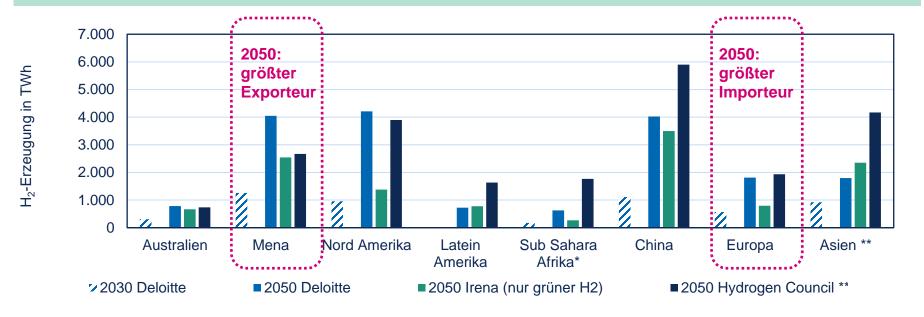
- → Erzeugungspotenziale in Regionen und Ländern
- → politisches Umfeld vor Ort
- → Transport- und Erzeugungskosten für Wasserstoff und seine Derivate
- → Verfügbarkeit geeigneter Transportrouten



Vergleich Bedarf und prognostizierter Erzeugung

Wieviel klimafreundlicher H₂ wird zukünftig benötigt?

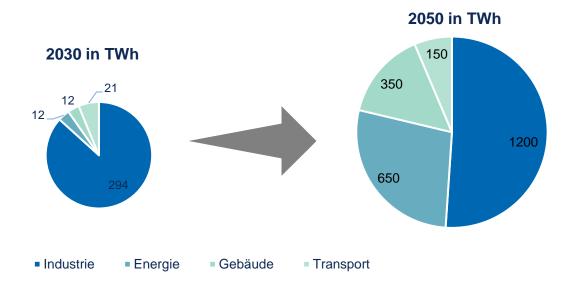
- weltweit wird der Bedarf an klimafreundlichem H₂ gedeckt werden können
- regional werden Importe notwendig sein


Quelle: DVGW

Regionale Wasserstofferzeugung nach techno-ökonomischen Studien

In welchen Regionen wird klimafreundlicher H₂ zukünftig erzeugt?

Quelle: DVGW



^{*}Nordafrika in Sub-Sahara-Afrika enthalten für Hydrogen Council **Asien ohne China

H₂-Bedarf in der EU 27+UK

In welchen Sektoren wird H₂ zukünftig benötigt?

- y größter Sektor: Industrie
- ✓ Klimafreundlicher H₂-Bedarf in 2050 das 7-Fache
- ≥ 2050 H₂ auch in Energiesektor wichtig

Quelle: DVGW basierend auf Daten von European Hydrogen Backbone

Nationale Wasserstoffstrategie Deutschland

Was ist die H₂-Strategie Deutschlands?

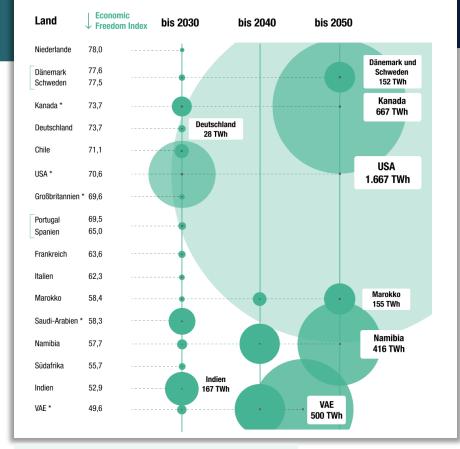
Update der NWS im Juli 2023:

- → 10 GW installierte Elektrolyseur-Kapazität
 - → 28 TWh H2 pro Jahr

H₂O

Prognostizierter H₂-Bedarf in Deutschland bis zu Jahr 2030:

- ≥ 95-130 TWh
- → 50-70 % gedeckt durch Importe



Ausbauziele gemäß nationaler Wasserstoffstrategien

Was für Ziele verfolgen andere Nationen?

höchsten Ausbauziele 2030:

- ^{SA} USA (333 TWh grüner und blauer H₂)
- ☑ Indien (167 TWh grüner H₂)
- Saudi-Arabien (133 TWh grüner und blauer H₂)
- ☑ Zum Vergleich: DE 28 TWh grüner H₂

Größe des Wasserstoffausbaus

* Ausbauziele berücksichtigen sowohl grünen als auch blauen Wasserstoff

H2dvgw.de

Quelle: DVGW basierend auf den Strategien der einzelnen Länder

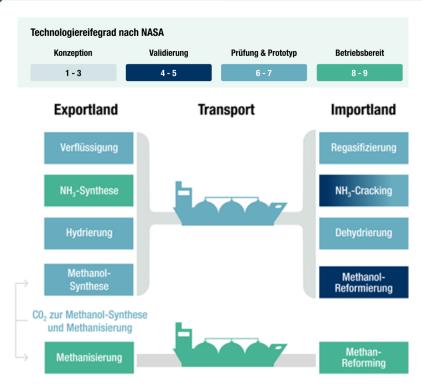
Entwicklungsstand H₂-Derivate für den Schiffstransport

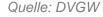
Welche Technologien gibt es?

Flüssigen Wasserstoff (LH₂)

Ammoniak (NH₃)

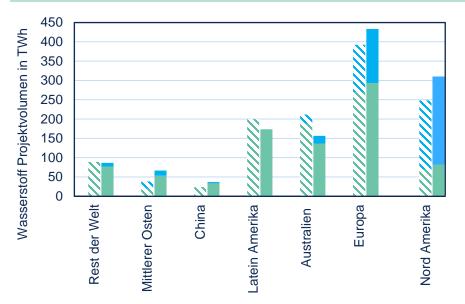
Liquid Organic Hydrogen Carrier (LOHC)




Methanol CH₃OH (MeOH)

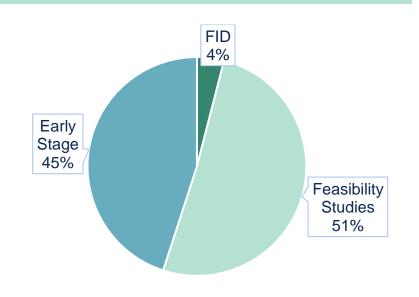
Flüssiges Methan CH₄ (Green LNG)

H,-Derivate LH, verflüssigter Wasserstoff NH, Ammoniak LOHC Liquid Organic Hydrogen Carrier Me0H Methanol Green LNG


synthetisches Methan

Große Dynamik bei angekündigten Projekte zur Wasserstofferzeugung (nach Erzeugungskapazitäten und Regionen)

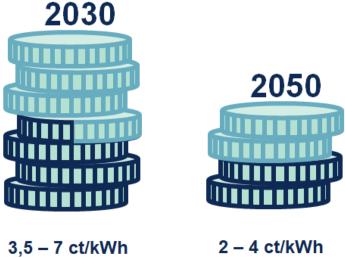
Projekte nach Region und Erzeugungskapazitäten



Sep 2023 Sep 2023 Sep 2023

Grüner H2 IEA Sep 2023

Status der Projekte



Gestehungskosten der Wasserstofferzeugung

Was kostet die Erzeugung von grünem Wasserstoff?

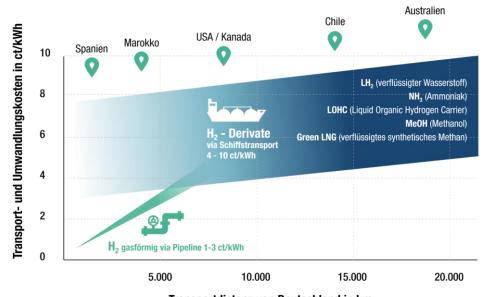
- ☑ Erwartete Kosten sinken bis 2050
- Stromkosten und Elektrolyseur-Kosten bestimmen grünen Wasserstoffpreis

Transport- und Umwandlungskosten für H₂ und H₂-Derivate

Was kostet der Import?

Distanz < 5.000 km

Sasförmiger H2 Pipelinetransport

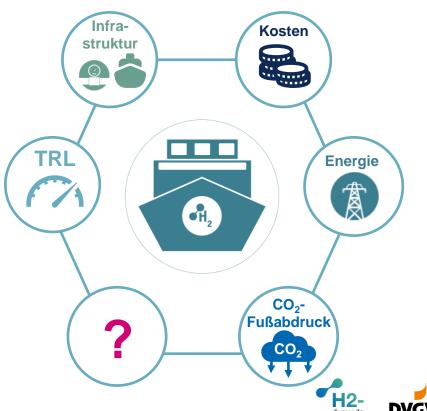


Distanz > 5.000 km

→ Als LH₂, NH₃, LOHC, MeOH, Green LNG

Transportkosten für H₂ und H₂-Derivate

Transportdistanz von Deutschland in km



Quelle: DVGW basierend auf Daten von Acatech (2022) und Ortiz et al. (2022)

Zur Bewertung von H₂-Importoptionen gibt es nicht "das eine" Kriterium!

Welche Kriterien sind wichtig?

- → TRL (Technologiereifegrad) der benötigten Verfahren
- Kosten (Gestehungskosten im Exportland, Transport- und Umwandlungskosten)
- ☑ Bestehende und benötigte Infrastruktur (Schiffe, Hafenanlagen, Pipelines)
- Energiebedarf
- → CO₂-Fußabdruck (THG-Emissionen entlang der Wertschöpfungskette)

Was zeigen uns die Daten?

- ✓ weltweit ausreichendes Erzeugungspotenzial f
 ür den globalen Wasserstoffbedarf
- ✓ Europa und Deutschland zukünftig auf Importe angewiesen
- ✓ viel Bewegung in der Projektpipeline, aber ein Vielfaches an Initiativen und Investitionen für den Wasserstoffhochlauf notwendig
- ✓ Pipelinetransport am günstigsten für Distanzen bis zu 5000 Kilometern
- ✓ Verhältnis von Erzeugungs- und Transportkosten entscheidend, nicht die Entfernung
 → entscheiden für z.B. Nordamerika oder Australien als Lieferregionen
- einige Logistikrouten schon recht weit, aber noch Entwicklungsbedarf

Welche Hürden existieren für den Wasserstoffimport?

Zügiger Aufbau von speziellen Terminals

- Terminals im für Energieimporte notwendigen Maßstab sind bisher noch nicht vorhanden
- nur vereinzelt Projekte für den Aufbau von Ammoniak- und LOHC-Terminals
- → mehr Investitionen und Pläne

Ausreichende Schiffskapazitäten für den Transport

→ Ausreichende Anzahl und Größe von Schiffen für den Transport der Wasserstoffderivate

Rückgewinnung von Wasserstoff aus den Derivaten

- Stand heute: nur Erfahrungen mit dem Betrieb kleinerer Anlagen
- → Anlagen in industriellem Maßstab und in für Energieimporte angemessener Größe

Ausbau einer CO₂-Transportinfrastruktur

- für die Erzeugung der Wasserstoff-Derivate Methan und Methanol und blauen Wasserstoff sowie für Kohlenstoffderivate
- Abtrennverfahren von CO₂ für alle Industriezweige

Was braucht es?

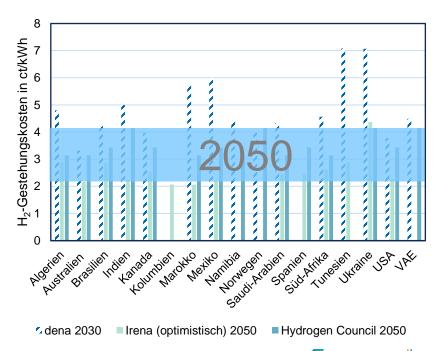
- ✓ Investitionssicherheit durch definierte und verlässliche Ordnungsrahmen, um weitere Initiativen und Projekte für den Ausbau der Wasserstofferzeugung sowie der Import- und Export-Infrastrukturen anzustoßen und voranzutreiben
- ✓ Förderung von Forschung und Technologieentwicklung für die Synthese von Derivaten und die Rückgewinnung von Wasserstoff
- ✓ Akzeptanz für alternative klimafreundliche Wasserstoffarten (wie z. B. blauen H₂) als Brückentechnologie sowie Aufbau entsprechender Erzeugungskapazitäten und Infrastrukturen auch für CO₂
- ✓ Ausweitung und Konkretisierung von internationalen Kooperationen und mittel- bis langfristigen Lieferabkommen

Vielen Dank für Ihre Aufmerksamkeit

Christiane Staudt Projektingenieurin DVGW-Forschungsstelle am Engler-Bunte-Institut des KIT staudt@dvgw-ebi.de

Dr. Stefanie Schwarz
Fachl. Leiterin Wissenschaftskommunikation
DVGW e.V.
stefanie.schwarz@dvgw.de

Weitere Informationen zu finden unter: www.dvgw.de/h2-import


Anhang

H₂-Gestehungskosten

