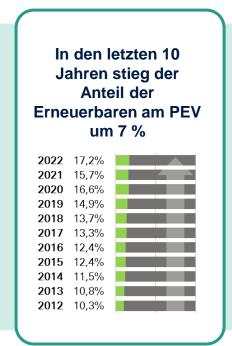
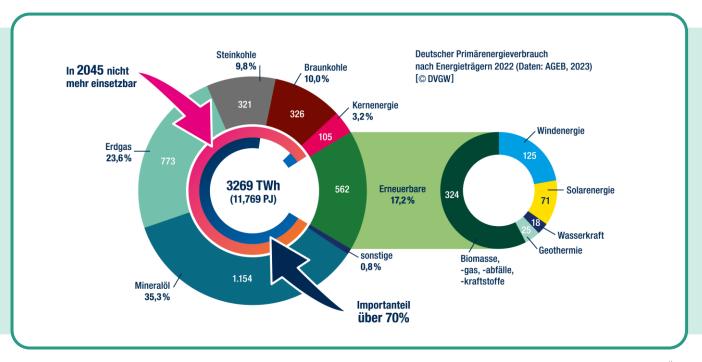
DVGW-Bezirksgruppentreffen


Der


Gasnetzgebietstransformationsplan (GTP) in Baden-Württemberg

Der Anteil Erneuerbarer steigt, aber es geht nicht schnell genug. Wir brauchen bald große Mengen importierter klimaneutraler Energie.

Quelle: AGEB 2022, 2023

Die Versorgung von Mittelstand, Kraftwerken, Industrie und Haushalten wird über das Gasnetz erfolgen müssen

- Das Fernleitungsnetz versorgt 500 Großkunden und die Verteilnetze
- Das Verteilnetz versorgt 1,8 Mio. Unternehmen sowie lokale Kraftwerke und 20 Millionen Wärmekunden
- Das Gasnetz ist 600.000 km lang und flächendeckend ausgebaut
- Wiederbeschaffungswert allein des Verteilnetzes: 270 Mrd. Euro
- Unsichtbare Infrastruktur für neuen Energieträger ohne Baustellen in den Ballungszentren

366
Industrie

Haushalte

306

Gewerbe &

Dienstleistung

127

Stromversorgung

125

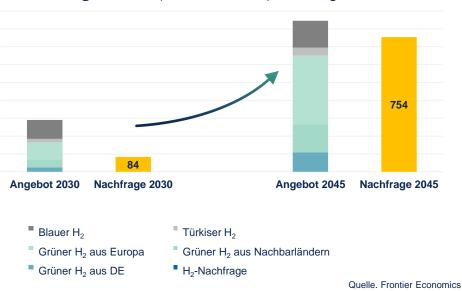
Wärme-& Kälteversorgung

O: \$\$\$\$\$\$

67

Terrawattstunden Energie aus dem Gasnetz

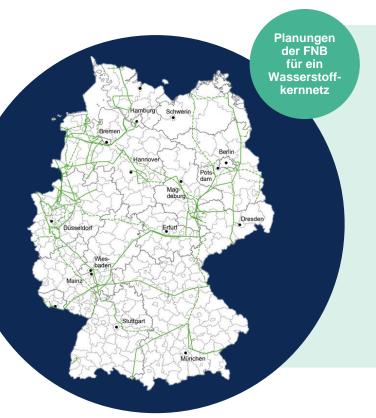
Die zukünftigen Bezugsquellen für Wasserstoff sind divers


und tragen damit zur Resilienz bei

Wettlauf um Wasserstoff hat bereits begonnen

• Weiterhin Import von Energie, aber diversifiziert

Wasserstoff kann alle Bedarfe decken


 Im Idealfall lässt sich sogar der gesamtdeutsche Endenergiebedarf (ca. 2.000 TWh) befriedigen

Mit dem Wasserstoff-Kernnetz wird aktuell ein erstes überregionales Transportnetz für Wasserstoff geplant

Wasserstoffkernnetz ist guter Startschuss für den H2-Hochlauf

- Kernnetz mit 9.700 km Länge ist ein erster Auftakt für eine überregionale deutsche Wasserstoffinfrastruktur
- Soll bis spätestens 2032 in Betrieb gehen
- Ziel der regionalen Ausgewogenheit nur bedingt erfüllt ("weiße Flecken")
- Finanzierungsmechanismus klar (Sonderfinanzierung über Amortisationskonto), Finanzierungssumme strittig
- Da es ein "politisches" Netz ist, muss schnellstmöglich ein Prozess für eine reguläre Netzentwicklungsplanung etabliert werden

Aber auch die Verteilnetzbetreiber erarbeiten im DVGW derzeit einen eigenen Transformationsplan für ihre Netze

Der GTP: Gasnetzgebietstransformationsplan

Der Gasnetzgebietstransformationsplan ist ein mehrjähriger Planungsprozess zur Transformation der individuellen Gasverteilnetze zur Klimaneutralität.

Ziel ist die Herstellung einer investitionsfähigen Planung bis spätestens 2025, die konform mit § 71k GEG ist.

Es beteiligen sich deutschlandweit bereits 241 Verteilnetzbetreiber an der Planung – die zusammen etwa 75 Prozent der Netzlängen abdecken.

Im GTP werden verschiedene Analysen zur Netztransformation durchgeführt und die Ergebnisse jährlich veröffentlicht

Kapazitätsanalyse

- Unterteilung des Netzgebiets in Umstellzonen
- Planung des Bezugs von Erdgas & klimaneutralen Gasen pro Umstellzone bis 2045

Einspeiseanalyse

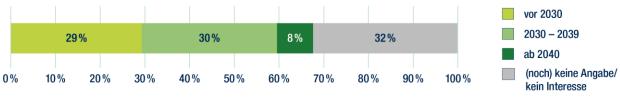
- Existierende Einspeisung von Biomethan und Wasserstoff
- Einspeisebegehren 2022

Technische Analyse

- Analyse der Rohrleitungskomponenten
- Update: Analyse der Rohrleitungsmaterialien
- Status H₂-ready-Beschaffung

Kundenanalyse

- Gespräche mit RLM-Kunden (Industrie, Mittelstand) zu Wasserstoffbedarfen
- Gespräche mit Kommunen zu Wasserstoffbedarfen


Der GTP liefert wertvollen Input für die Kommunale Wärmeplanung und die Industrieversorgungsstrategie

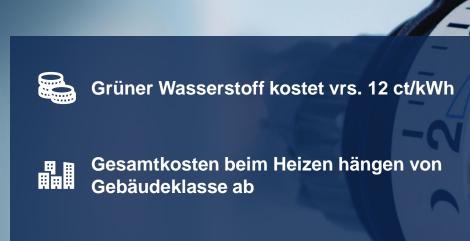
95 Prozent der Kommunen setzen langfristig auf klimaneutrale Gase

70 Prozent der Industriekunden planen eine Umstellung auf Wasserstoff

Geplante Umstellung auf Wasserstoff bei befragten RLM-Kunden [© DVGW]

H2-Readiness der Leitungen – technisch möglich und kostenmäßig überschaubar

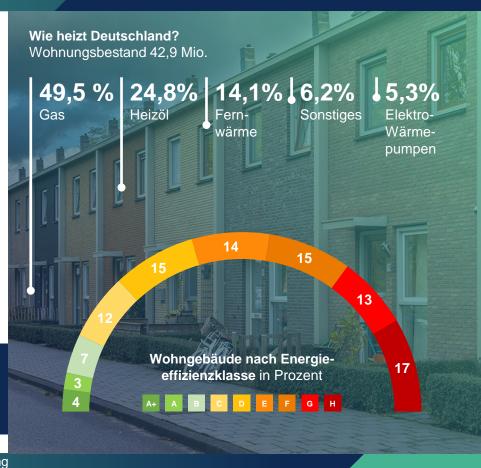
Die Kosten sind kalkulierbar


Anlagen

- ✓ 97 Prozent der verbauten Leitungen im Verteilnetz sind H2-ready
- Verbaute Stähle reagieren auf Wasserstoff genauso wie auf Methan

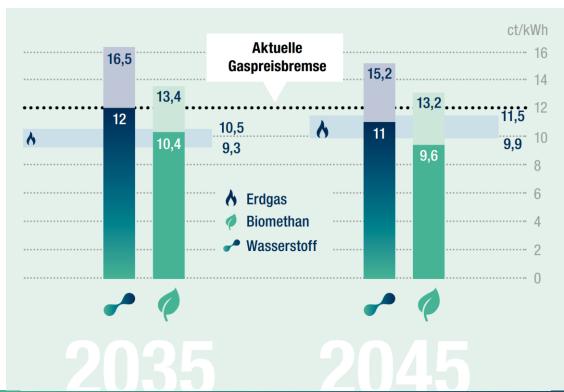
So weit ist das System "H₂-ready"

Wasserstoff im Wärmemarkt – Realitätscheck und Ordnungsrahmen



Ordnungsrahmen für Wasserstoff in der Wärmeversorgung steht (GEG & WPG)

Der Status Quo im Wärmesektor: wo stehen wir heute?

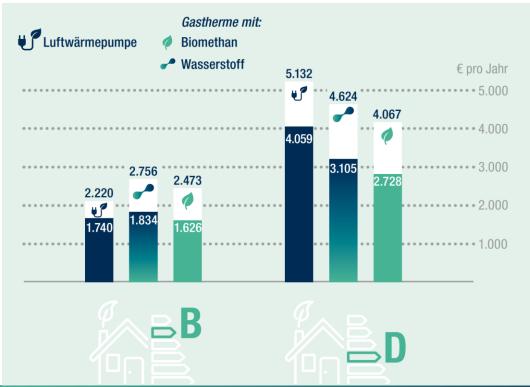

- Gas ist der dominante Energieträger im Wärmemarkt;
 Wasserstoff und Biomethan als klimaneutrale
 Alternative stehen aber noch nicht in ausreichenden
 Mengen zur Verfügung
- Elektrische Wärmepumpen sind auf dem Vormarsch, aber für schlecht gedämmte Gebäude oft nicht geeignet; außerdem sind lokale Stromnetze meist nicht auf eine Elektrifizierung der Wärmeversorgung und der E-Mobilität ausgelegt
- Der Ausbau der Fernwärme schreitet zwar voran, allerdings nur langsam; in fast allen Fällen basiert die Fernwärme auf fossilen Brennstoffen
- Die Sanierungsrate für Wohngebäude stagniert seit Jahren bei etwa 1 % p.a.

Die Trägheit des Wärmesektors erfordert langfristige Transformationspläne anstelle von kurzfristigen ordnungsrechtlichen Eingriffen und immerzu neuen Belastungen für die Bürgerinnen und Bürger

Neue Studie: Die Kosten für Wasserstoff beim Endkunden im Wärmemarkt werden nicht höher als die für Erdgas sein

Bandbreiten möglicher Endkundenpreise für die neuen Gase Wasserstoff und Biomethan in der Wärmeversorgung in den Jahren 2035 und 2045 (ct/kWh)

- Energieträgervergleich zeigt, dass die Endkundenpreise für grünen Wasserstoff im Jahr 2035 voraussichtlich über denen für Erdgas und Biomethan liegen
- Langfristig (ca. 2045) könnten sich die Endkundenpreise für grünen
 Wasserstoff den Endkundenpreisen für Erdgas und Biomethan annähern
- Jedoch wird der Einsatz von Erdgas für die Wärmeversorgung von Haushalten ab 2045 nicht mehr erlaubt sein.

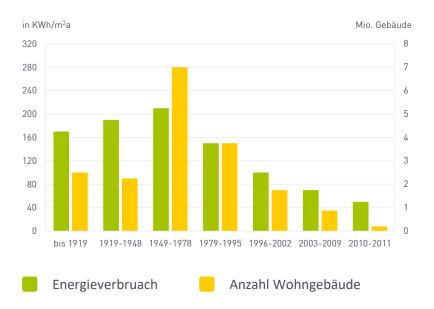

Quelle, DVGW basierend auf Daten von Frontier Economics

Siehe www.dvgw.de/h2-preise-und-kosten

Wärmepumpen weisen nur in gut sanierten Gebäuden einen leichten Vorteil gegenüber Grüngasheizungen auf

Bandbreiten möglicher Gesamtkosten für unterschiedliche Wärmeversorgungs-lösungen in einem Einfamilienhaus der Effizienzklassen B und D im Jahr 2045 (in Euro pro Jahr)

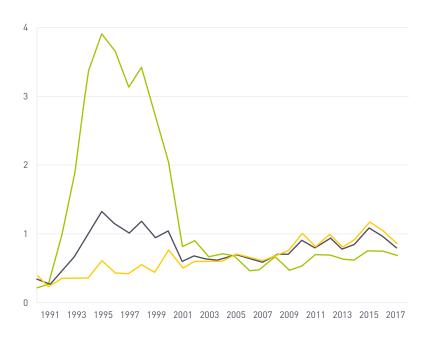
- Weder Wärmepumpen noch Grüngasthermen weisen einen eindeutigen – und über alle Gebäude-typen gültigen – Kostenvorteil auf.
- Kostenvorteile unterschiedlicher Wärmeversorgungslösungen können je nach Szenario (z. B. für Wasserstoff-Gestehungskosten, CO2-Preis), Zeitpunkt und Gebäudetyp variieren.
- Wärmepumpen können bei Gebäuden mit einer höheren Effizienzklasse und Grüngasthermen bei Gebäuden einer niedrigeren Effizienzklasse geringere Gesamtkosten aufweisen.


Quelle. DVGW basierend auf Daten von Frontier Economics

Siehe www.dvgw.de/h2-preise-und-kosten

Soziale Brennpunkte durch die Energie- und Wärmepumpe

Wohngebäude: Baujahre 1949-1979 haben höchsten Energieverbrauch



Styropor statt Fachwerk: Sanierungspflicht für Altbauten?

- > 85% der Gebäude erfüllen kein KfW70, diese Gebäuden gehören hauptsächlich Altersgruppen zwischen 60 und 90 Jahren die oft keine Sanierungsdarlehen mehr bekommen
- > 67% der Gebäude wurden vor 1979 gebaut (Jahr der 1. Energieeinsparverordnung)
- für den Einbau von Wärmepumpen sind meist aufwändige Dämmmaßnahmen, der Einbau einer Fußbodenheizung und von automatischen Lüftungssystemen erforderlich
- bei heute üblichen Vorlauftemperaturen von 65-70°C im läuft die Wärmepumpe ineffizient (Gebäude-COP-Wert ≈ 2) hoher Stromverbrauch
- Die Kosten der Sanierungen werden oft über Index- und Staffelmieten an die Bürger weiter gegeben = soz. Armut droht
- Tragbare Kostendosierung ist notwendig

Soziale Brennpunkte durch die Energie- und Wärmepumpe

Energetische Sanierungsrate (IST)

Sanierungsraten zwischen Wunsch und Wirklichkeit

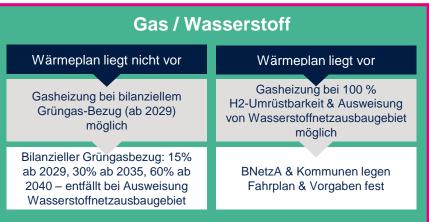
Modernisierungsrate verharrt in den letzten 15 Jahren bei unter einem Prozent. Aktuell bei 0,85 Prozent.

- Neue Länder
- Deutschland
- Alte Länder

Selbst mit einer Sanierungsrate von 2% (heute ca. 0,85%) sind 2050 nur 60% der Häuser saniert. Bei einem linearen Anstieg der Handwerker (36.000/Jahr) wird die 1%-Marke erstmals zwischen 2035 und 2040 erreicht.

Quelle: ista Deutschland GmbH, eigene Berechnungen. © DIW Berlin 2019

Die Vorgaben des GEG und WPG werden sich stark auf die künftige Rolle neuer Gase im Wärmesektor auswirken


Gebäudeenergiegesetz (GEG)

- Ab 2024 soll "möglichst jede neu eingebaute Heizung zu 65 % mit Erneuerbaren Energien betrieben werden" (KoaA 23.03.2023)
- Enthält Vorgaben für Heizungstausch (inkl. Beratungspflicht), mit Auswirkungen insb. auf die Gas- & Wärmeversorgung
- Gilt im Neubau ab 2024, im Bestand spätestens ab 2026 bzw. 2028 (je nach Größe der Kommune / Deadline des WPG)

Wärmeplanungsgesetz (WPG)

- Kommunen müssen bis Mitte 2026 (> 100.000 EW) bzw. Mitte 2028 (< 100.000 EW) einen Wärmeplan vorlegen
- Wärmepläne weisen verschiedene Gebiete (insb. Wärme- & Wasserstoffgebiete) aus & schaffen Planungssicherheit bei Heizungstausch
- Aktualisierung der Wärmepläne spätestens alle fünf Jahre

Die Gasbranche kann die Anforderungen des überarbeiteten GEG erfüllen – und hat bereits Lösungen entwickelt

Regelungen zum Heizen mit klimaneutralen Gasen im GEG

Kommunale Wärmeplanung liegt nicht vor

Gasheizungen dürfen bis zur Vorlage der Wärmeplanung eingebaut werden. Bis dahin eingebaute Gasheizungen, die nicht in einem Wasserstoffnetzausbaugebiet liegen, müssen bilanziell mit Wasserstoff-/ Biomethananteilen betrieben werden (15% ab 2029, 30% ab 2035 und 60% ab 2040)

Kommunale Wärmeplanung liegt vor

Wärmeplanung sieht Wasserstoff vor und Netzbetreiber legt einen "Fahrplan" für ein "Wasserstoffnetzausbaugebiet" vor

Gasheizungen dürfen eingebaut werden, sofern mit "niederschwelligen Maßnahmen" auf einen 100-prozentigen Wasserstoff-Betrieb umrüstbar Der Gasnetzgebietstransformationsplan
(GTP) nach DVGWRegelwerk deckt die
Anforderungen
größtenteils schon ab
und wird aktuell
entsprechend der neuen
Vorschriften überarbeitet.

Die H2ready-Gaskessel sind bereits entwickelt worden und können spätestens 2026 zum neuen Standard werden. Die zusätzlichen Kosten liegen bei 200-300 € pro Gerät.

Die Gasbranche kann

ausreichend

klimaneutrale Gase für

die Einhaltung der

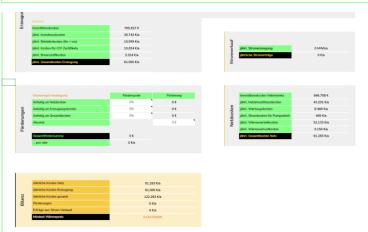
gesetzlichen Vorschriften

bereitstellen.

Allein das bis 2030

hebbare zusätzliche

Biomethanpotenzial


Kommunale gebäudescharfe Wärmeplanung

Netze Gesellschaft Südwest • Andreas Schick // Geschäftsführung

Kommunale gebäudescharfe Wärmeplanung

Nahwärmenetz-Errichtung

- Wann: unbekannt?
- Kosten Errichtung Nahwärmenetze: ca. 26
 Mio. € ohne Förderung und ca. 16 Mio. €
 mit Förderung
 [Annahme: 53% AQ und 0,7€/kWh]
- Entwertung Gas-Asset bei Umstellung auf Nahwärmenetz (ca. 30 km): ca. 2 Mio. €
- Sanierungsrate KEA zu hoch mit 1,5%
- Erwarteter Preis: ca. 17-23 Cent/kWh

H2-Transformation der Gasnetze

- Wann: 2033
- Buchwert Asset Gasnetz: 5,4 Mio. €
- Transformationskosten Gasnetz:
 1,4 Mio. €
- Vorhandene Industrie- & Mittelstandskunden werden direkt mit umgestellt
- Erwarteter Preis: ca. 12-17 Cent/kWh (H2-Studie Frontier/Wasserstoffkompass)

Fazit:

- Wärmenetze nur wirtschaftlich, wenn lokale Abwärme günstig genutzt oder erneuerbare Potentiale wirtschaftlich gehoben werden können
- Wärmeabgabepreise für Endkunden müssen sozioökonomisch tragbar sein
- Für Wärmenetze sollten prüfbare
 Wirtschaftlichkeitsstandards eingeführt werden
- Noch abzuwarten, ob ein Anschluss- und Benutzungszwang neben regulierten Netzen juristisch Bestand haben wird
- Studien zu Fern- & Nahwärmenetzen ermitteln
 Abgabepreise: 18-29 Ct/kWh.

Kosten Wärmenetze im Preisvergleich

PREISE FERNWÄRME QUARTALE 1 BIS 3 IM JAHR 2023

GROßE STADTNETZE – EINFAMILIENHAUS

	Preis pro kWh (aufs Jahr gerechnet)			Jahresgesamtpreis		
	Q1/2023	Q2/2023	Q3/2023	Q1/2023	Q2/2023	Q3/2023
Berlin	0,19€	0,19€	0,19€	3.395 €	3.486 €	3.403 €
Bremen	0,12€	0,13€	0,13€	2.203 €	2.249€	2.313€
Erfurt	0,36€	0,26€	0,20€	6.463 €	4.602€	3.515€
Frankfurt a.M.	0,19€	0,19€	0,19€	3.471 €	3.471 €	3.471 €
Halle	0,12€	0,12€	0,12€	2.209 €	2.209€	2.230 €
Hamburg	0,19€	0,19€	0,19€	3.440 €	3.440 €	3.440 €
Hannover	0,13€	0,19€	0,19€	2.414 €	3.506 €	3.506 €
Kiel	0,17€	0,17€	0,17€	3.006 €	3.006€	3.026 €
Köln	0,19€	0,27 €	0,27€	3.350 €	4.836 €	4.855€
Leipzig	0,19€	0,19€	0,19€	3.397 €	3.397 €	3.397 €
Mainz	0,24 €	0,18€	0,18€	4.254 €	3.214 €	3.214 €
München	0,24 €	0,19€	0,18€	4.366 €	3.500 €	3.255 €
Potsdam	0,20€	0,20€	0,20€	3.569 €	3.569 €	3.569 €
Rostock	0,14 €	0,14 €	0,14 €	2.502€	2.502€	2.502 €
Saarbrücken	0,33€	0,24 €	0,15€	5.916 €	4.333€	2.738 €
Stuttgart	0,20€	0,20€	0,23€	3.572 €	3.572€	4.227 €

Kostenvergleich zwischen den Netzen
geringe Kosten
hohe Kosten

Quelle: Preismonitoring Wärmenetze Q1-Q3/2023 Bundesverband Verbraucherzentrale

Kosten Wärmenetze im Preisvergleich

PREISE FERNWÄRME – BANDBREITE

GROßE STADTNETZE – EINFAMILIENHAUS

	niedrigster Wert	höchster Wert	Verhältnis niedrigster/höchster Wert	absoluter Unterschied	Median
Q1/2023	0,12€	0,36€	293 %	0,24 €	0,19€
Q2/2023	0,12€	0,27 €	219 %	0,15 €	0,19€
Q3/2023	0,12€	0,27 €	218 %	0,15 €	0,19€

- Im ersten Quartal 2023 war der Effektivpreis für ein untersuchtes Einfamilienhaus im teuersten untersuchten Netz **fast dreimal** so hoch wie der Effektivpreis im günstigsten Netz.
- Im dritten Quartal 2023 war der Effektivpreis für ein untersuchtes Einfamilienhaus im teuersten untersuchten Netz **mehr als doppelt** so hoch wie der Effektivpreis im günstigsten Netz.

Kosten Wärmenetze im Preisvergleich

PREISE FERNWÄRME QUARTALE 1 BIS 3 IM JAHR 2023

KLEINE NETZE - EINFAMILIENHAUS

	Preis pro kWh (aufs Jahr gerechnet)			Jahresgesamtpreis		
	Q1/2023	Q2/2023	Q3/2023	Q1/2023	Q2/2023	Q3/2023
Annaberg	0,17€	0,17€	0,17€	3.097 €	3.102 €	3.125 €
Bad Laasphe	0,14 €	0,18€		2.471 €	3.153 €	3.153 €
Barsbüttel	0,36 €	0,36€	0,36 €	6.417 €	6.430 €	6.448 €
Bernburg	0,25 €	0,25€	0,25€	4.557 €	4.557 €	4.575 €
Bovenden	0,19€	0,19€	0,19€	3.477 €	3.477 €	3.477 €
Dietzenbach	0,15 €	0,15 €	0,15 €	2.633 €	2.633 €	2.633 €
Güstrow	0,36 €	0,36€	0,36 €	6.412€	6.412€	6.412 €
Haßloch	0,27 €	0,27 €	0,27 €	4.841 €	4.841 €	4.841 €
HH_Weusthoffstr.	0,38 €	0,38 €	0,38 €	6.798 €	6.798 €	6.820 €
Holzkirchen	0,15€	0,15€	0,15 €	2.750 €	2.750 €	2.750 €
B_Neukölln	0,16 €	0,23 €	0,23 €	2.848 €	4.094 €	4.094 €
Niederorschel	0,33 €	0,22€	0,16 €	6.026 €	3.962 €	2.957 €
Oranienburg	0,22€	0,22€	0,21 €	3.870 €	3.870 €	3.703 €
Reutlingen	0,22€	0,22€	0,22€	3.886 €	3.886 €	3.886 €
Saarlouis	0,24 €	0,21€	0,20€	4.230 €	3.859 €	3.675 €

Kostenvergleich zwischen den Netzen
geringe Kosten

hohe Kosten

Quelle: Preismonitoring Wärmenetze Q1-Q3/2023 Bundesverband Verbraucherzentrale

Was kostet Strom nach dem NEP23 bis 2045 in der Zukunft in Deutschland

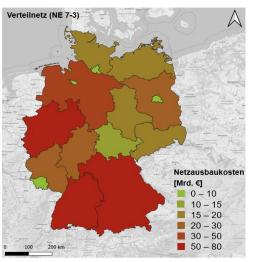
Wind & Sonne schreiben keine Rechnung in der Erzeugung – stimmt. Und der Netzausbau?

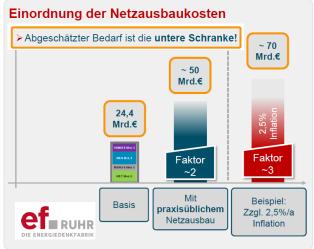
380 kV Übertragungsnetz

Ergebnisse Übertragungsnetz

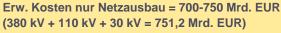
Investitionen für das Übertragungsnetz werden bereits im **NEP veröffentlicht** und entsprechend übernommen

 Die Netzausbaukosten im Übertragungsnetz werden über einen geeigneten Faktor auf die Bundesländer verteilt


Offshore 145,1 Mrd.€


Hös& Hös/HS 156,1 Mrd.€

Gesamt 301,2 Mrd.€


https://www.netzentwicklungsplan.de/sites/default/files/2023-07/NEP 2037 2045 V2023 2 Entwurf Teil1.pdf

Verteilnetze: 30 kV Nieder- & Mittelspannung bis 110 kV Hochspannung

30 kV- 110 kV Verteilnetze	50 Mrd. EUR Kosten für Baden-Württemberg (untere Schranke) Vorsichtiger Ansatz nur 9/16 Bundesländer: 9 * 50 Mrd. EUR = 450 Mrd. EUR	
380 kV Übertragung	Gemäß Veröffentlichung des NEP23 = 301,2 Mrd. EUR	

Mit 2,5 % Inflation bei rd. 1.000 Mrd. EUR

Die günstigen Erzeugungskosten werden durch die

hohen Netzausbaukosten mehrfach eingeholt

Ergebnis: Der Strompreis steigt deutlich

Was kostet die H2-Infrastruktur gemäß NEP23 in Deutschland

Ist Wasserstoff der Champagner der Energiewende? Die Erzeugung ist teurer. Und das Netz?

H2 Kern	Gemäß Meldung der BNetzA 19,8 Mrd. EUR für 9.721 km
VNB	70 Mio. EUR : 5.000 km = 14.000 EUR/km (Transformationskosten Netze Südwest) $560.000 \text{ km} \times 14.000 \text{ EUR/km} = 7.84 \text{ Mrd. EUR} -> \text{rd. } 12 \text{ Mrd. S-Faktor } 20.000 \text{ EUR/km}$
Anlagen	Speicher gem. DVGW = ca. 28 Mrd. EUR (Studie DVGW 2022) Druckanlagen & Einspeisung = ca. 44 Mrd. EUR (Studie DVGW 2022)

Gesamtkosten Schätzung untere Schranke für NEP23 bis 2045 über alle Netzebenen:

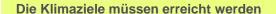
H2 Kernnetz 20 Mrd. EUR

+ VNB Netz Transformation 12 Mrd. EUR

+ Speicher, Einspeisung 72 Mrd. EUR

Summe: 104 Mrd. EUR

Fazit: Die Erzeugung von H2 ist zwar teurer aber der Aufbau einer H2-Infrastruktur in ganz Deutschland kostet nur einen Bruchteil vom Stromnetz. Außerdem gibt es neue Technologien zur Erzeugung mit hohem Wirkungsgrad



Klimaziele innerhalb der Energie- und Wärmewende erreichen ...und dabei alle Sektoren und Beteiligten in Einklang bringen!

Kosten Strom: Erzeugung günstiger < > Netz sehr teuer

Die Industrie & KMU brauchen bezahlbare Energie

Wärmenetze: Oft teurer < > nur bei Potentialen ökonomisch

Zusammenfassung: Unsere Aufgabe & Verantwortung für die Zukunft:

- Die Sektoren H2, Strom, Wärmenetz neu austarieren
- Klimaziele erreichen ohne Industrie & Mittelstand zu verlieren
- Dabei bestmöglich die erneuerbaren Potentiale nutzen
- Sozioökonomisch bezahlbare Sanierung & Energie für Privathaushalte, um die Bürger nicht zu verlieren
- Dies in eine digitale kommunale Wärmeplanung mit klarem, vergleichbarem Muster und digitaler Nachverfolgung

Es ist möglich Klimaziele zu erreichen mit erhalt von Industrie, Mittelstand und der positiven Wahrnehmung von Bürgerinnen und Bürgern.

Vielen Dank für Ihre Aufmerksamkeit!

Andreas Schick

Geschäftsführung a.schick@netze-suedwest.de +49 151 4242 7531

